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INTRODUCTION
The prevalence of metabolic diseases especially di-

abetes mellitus has increased in Indonesia between 
2007 and 20131. Long-term increase in blood glucose 
levels in these patients leads to the formation of cova-
lent additions of glucose with plasma proteins through 
a non-enzymatic process known as glycation. Protein 
glycation results in the formation of advanced glycation 
end products (AGE) which play an important role in the 
pathogenesis of complications of diabetes2. Patholog-
ically high blood glucose increases glycosylation reac-
tions resulting in large amounts of AGE products3 which 
are also involved in the development of diabetes related 
osteoporosis. AGE products may also affect the activity 
of osteoblasts and osteoclasts, interfere with the bone 
remodeling process and reduce angiogenesis4,5.

In prosthodontic treatments such as dental implants, 
angiogenesis plays a crucial role. New bone formation, 
bone regeneration and osseointegration after place-

ment of dental implants are key to successful treatment. 
These processes require an adequate blood supply 
providing nutrients, oxygen and osteoprogenitor cells 
through newly-formed blood vessels. An interaction be-
tween angiogenesis and osteogenesis occurs in such a 
way that the regulation of angiogenesis can affect the 
bone remodeling process required for successful dental 
implant treatment6.

Stem cell technology has developed rapidly in recent 
years to the extent that it is considered capable of offer-
ing new options for currently inadequate treatment of 
conditions such as diabetes and its complications7,8. The 
main source of mesenchymal stem cells (MSCs) for stem 
cell treatment is bone marrow, despite the fact that cell 
harvesting is a highly invasive procedure. In addition, the 
potential difference, the maximum number and the life 
span of MSCs declines with increased donor age9. An-
other potential source of MSCs is the umbilical cord due 
to its higher in vitro culture proliferation rate and sup-
posed immunity to certain antigens. It is also a source 
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ABSTRACT
Objective: To determine the effect of advanced glycation end product- bo-
vine serum albumin medium of human umbilical cord mesenchymal stem 
cells on vascular endothelial growth factor secretion.

Methodology: This was an experimental study with post-test only control 
group design. Mesenchymal stem cells, isolated from a human umbilical cord 
were cultured and expanded up to passage 5. The subject groups were divid-
ed into a treatment group (aMEM+AGE-BSA medium) and a control group. 
Flowcytometry assessment was conducted in passage 4 by tripination and 
suspension of human umbilical cord mesenchymal stem cells in minimum es-
sential medium. Samples collected on days 3, 6, 9, 12, 14, 17 and 21 were 
subsequently examined with enzyme-linked immunosorbent assay to observe 
the amount of vascular endothelial growth factor secretion.

Results: In the advanced glycation end product - bovine serum albumin 
group, the peak level of vascular endothelial growth factor secretion occurred 
on day 3 and gradually declined on day 21, whereas in the control group the 
peak level reached on day 6 and continued to decrease up to day 21.

Conclusion: This research indicated that advanced glycation end product- 
bovine serum albumin enhances vascular endothelial growth factor secretion 
by mesenchymal stem cells with maximum secretion occurring on day 3.
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of MSCs that are usually discarded after childbirth, but 
whose collection and storge is developing in a global 
network bank. Human umbilical cord stem cells (hUCM-
SCs) possess multipotential properties and are able to 
differentiate into several types of cells such as adipo-
cytes, osteoblasts, hepatocytes, chondrocytes, heart and 
nerve cells. They also cause beneficial effects such as an-
giogenesis10,11.

Angiogenesis constitutes a dynamic process that 
is strongly influenced by signals from the extracellular 
matrix and serum contained in the micro environment. 
VEGF, angiopoietin, fibroblast growth factor and beta 
transformation growth factors are the most powerful 
angiogenic cytokines in the process of angiogenesis. 
VEGF is a specific mitogen vascular endothelial cell that 
stimulates endothelial cell proliferation and microvascu-
lar permeability, while also regulating several endotheli-
al integrin receptors during the formation of new blood 
vessels12,13.

At present, no in vitro studies exist regarding VEGF 
secretion by hUCMSCs in the AGE-BSA medium which 
constitutes the micro-environment in diabetic patients. 
Therefore, it is important to establish a theoretical basis 
for further research related to the application of hUCM-
SCs in the treatment of diabetes.The purpose of this 
study was, therefore, to determine the effect of AGE-BSA 
medium on hUCMSCs and, by extension, VEGF secretion.

METHODOLOGY
Ethical approval for this study was granted by the 

Komisi Etik Penelitian Fakultas Kedokteran Hewan, Uni-
versitas Airlangga, Indonesia (Number 2.KE.152.09.2018). 
The benefits of this study were explained to participants 
and an informed consent form was obtained.

Umbilical cord cells were extracted from the pla-
centa of a healthy newborn by cesarean section with 
elective indications. The isolation and multiplication of 
hUCMSCs was conducted according to the standard 
procedures of the Stem Cell Research and Development 
Center, Universitas Airlangga, by modifying several 
stages previously implemented by Hendrijantini et al. 
(2015). The umbilical cord was cut into 10 cm long sec-
tions which were subsequently placed in sterile boxes 
lined with sterile gauze and washed three times with 
phosphate-buffered saline (PBS) in three different tubes 
to remove any residual blood. The umbilical cord was 
washed again with ringer lactate (RL) containing 2.5 
μg/mL gentamicin and 1000U/mL amphotericin for 20 
minutes before being transported to the laboratory in 
a cool box. 

The umbilical cord was cut into 1 mm3 sections, 
cleaned and separated from the arteries, veins and ad-
ventitia. It was subsequently immersed in a 0.75 mg/mL 
collagenase IV cone tube at 37°C and 0.075 mg/mL of 
DNAse I for 40 minutes before being placed on a me-

dium hot plate stirrer for 15 minutes. In the subsequent 
step, the umbilical cord was filtered through a cell fil-
ter and the resulting pellets collected. The supernatant 
was removed before being centrifuged at 1800 rpm for 
six minutes, a procedure that was repeated twice. The 
pellets were transferred to a petri dish and stored in a 
5% CO2 incubator at 37°C. Daily observation, conduct-
ed by means of an inverted microscope, monitored cell 
growth until it reached the confluent stage. Confluence 
constitutes a form of cell growth in a petri dish contain-
ing a large population so that the transition process can 
be completed. (Hendrijantini et al. 2015)

Flowcytometry assessment was conducted in pas-
sage 4 by tripination and suspension of hUCMSCs in 
αMEM medium, after which they were washed with PBS 
and fixed in 10% formaldehyde solution for ten minutes. 
They were subsequently covered with AGE-BSA solution 
for one hour, at which point the cells were incubated us-
ing the Human MSCs Analysis Kit (BD StemflowTM, BD 
Biosciences) with the addition of anti-human antibod-
ies CD 73, CD 90, CD 105, and negative cocktails CD45, 
CD34 for 40 minutes. Unbonded antibodies were re-
moved by means of PBS washing. The primary antibod-
ies were labeled using Fluorescein isothiocyanate (FITC) 
conjugated anti-human antibodies by means of incuba-
tion for 30 minutes. The cells were then analyzed using 
a FACSCaliburflowcytometer (BD Biosciences, Franklin 
Lakes, NJ, USA). Modified AGE-BSA was produced by 
reacting BSA with glycolaldehyde under sterile condi-
tions followed by extensive dialysis and purification. The 
doses were reduced gradually as follows: 25, 12.5, 6.25, 
3.125, 1.56, 0.78 and 0.39 mM. hUCMSCs were placed 
in 12-well plates, each containing a density of 1×105 
cells per well. When the cells were ready, the culture 
media was replaced. hUCMSCs were then placed in an 
incubator at 37°C and 5% CO2 for 21 days. It was nec-
essary to replace the medium after 2-3 days depending 
on its condition indicated by changes in its color. If the 
medium turned yellow, it had to be replaced. During 
each replacement, the culture medium of the hUCMSCs 
was collected and centrifuged at 3000 rpm for 20 min-
utes. Supernatant was extracted and stored at -80°C. 
VEGF protein levels in the media were measured using 
an ELISA kit in accordance with the instructions of the 
manufacturer16.

Statistical analysis was performed using statistical 
package for the social sciences software (SPSS) 24.0 
edition (SPSSTM, Chicago, United States). The data was 
analyzed using independent t-test.

RESULTS
During the first 24 hours, almost all cells were oval 

in shape. However, 24 hours later, they had attached 
themselves to the tube and assumed a spindle or fi-
broblast-like form. After three days, these cells grew to 
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reach 90 % confluence (see Figure 1).

It can be seen from figure 2 that the flowcytometry 
results for CD90 were 53% and 22.63% in the control 
group. This meant that the cells expressed CD90 pos-
itive. For Neg PE, the results were 0 and 22.63% in the 
control group, meaning that the cell state was Negative 
Neg PE.

Figure 3 shows the result for CD 105 in the control 
which were 90.28% and 21.16%, indicating that cells ex-
pressed CD 105 positivity.

From Figure 4, the results for CD 73 showed that cells 
expressing CD73 were positive with 6.08% and 3.83% in 
the control group.

Collection of data relating to the amount of VEGF se-
creted by hUCMSCs in the medium was initiated during 
passage 5. Every change of medium color was observed 
and examined with an ELISA reader. Seven media were 
collected at a rate of one daily on days 3, 6, 9, 12, 14, 
17 and 21. The data relating to these can be seen in 
figure 5.

In the AGE-BSA group, the peak level of VEGF se-
cretion occurred on day 3, with a decrease from day 9. 
In the control group, VEGF secretion peaked on day 6 
before reducing gradually between day 12 and day 21 
though their levels were the same on days 6, 14, 17 and 
21.

Figure 1: hUCMSCs culture. (A) oval shaped. (B) 
spindle or fibroblast shaped cells

Figure 3: Flowcytometry result on CD105 with 
Neg PE

Figure 2: Flowcytometry results for CD90 with 
Neg PE

Figure 4: Flowcytometry result for CD105 with 
CD73

DISCUSSION

It has been reported that mesenchymal stem cells 
have the ability to differentiate into endothelial cells 
through a process of angiogenesis28–31. This angiogenic 

property was contributed by angiogenic cytokines such 
as VEGF that was released by the MSCs itself. VEGF is an 
important angiogenic factor that encourages migration 
and proliferation of endothelial cells to maintain blood 
vessel integrity. VEGF affects the formation of early 
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blood vessels and increases the formation of primitive 
blood vessel tissue32. VEGF production by MSCs may be 
an important factor responsible for the angiogenic po-
tential of MSCs33.

This study revealed that on day 3, VEGF secretion was 
higher in the AGE-BSA group than in the control group. 
This result supports the study conducted by Shoji et al. 
(2006) which found that AGE interactions can cause an-
giogenesis through autocrine vascular VEGF induction. 
However, the mechanism through which this occurs was 
not clearly understood at that time. In a more recent 
study, researchers found that AGE can increase VEGF 
secretion through its interaction with the RAGE recep-
tor which regulates the expression of Cyr61, a cell ma-
trix adjustment factor that plays an extremely important 
role in angiogenesis. Cyr61 can, in turn, activate the in-
tergrin-PI3K / AKT signaling pathway, accelerate NF-κB 
nuclear translocation and promote VEGF secretion35.

In another study, it was found that AGE interacts with 
RAGE to induce activation of the Ras-mitogen activated 
protein kinase (Ras-MAPK) activated by the generation 
of ROS-mediated NADPH oxidase which subsequently 
stimulates NF-kB translocation. The consequences lead 
to the transcription of the target gene, VEGF36.

In the findings presented here, the peak rate of VEGF 
secretion by hUCMSCs in growth media occurred on 
day 6. This result is similar to that of a study conducted 
by Matsumoto et al. (2005) which found that the peak 
level of VEGF secretion in MSCs occurred on day 5.

The VEGF levels in AGE-BSA decreased earlier than un 
the control group. In the AGE-BSA group, the amount of 
VEGF decreased after day 9. On the other hand, the level 
of VEGF in the control group decreased by the 14th day. 
This finding might be due to AGE-BSA in the treatment 
group affecting the number of hUCMSCs through ROS 
production. The reaction between ROS and fat mem-
brane will form MDA which demonstrates cell damage 

properties. Cell death caused by MDA is referred to as 
necrosis. ROS can also react with Fe / Cu ions to pro-
duce hydroxyl radicals (OH*). These radicals can translo-
cate into the cell nucleus and cause damage to genetic 
components / DNA fragmentation. Fragmentation will 
cause cell death, known as apoptosis (Sudiana, 2017). 
The amount of hUCMSCs is reduced with the result that 
the VEGF level experiences a decrease.

 
CONCLUSION

AGE-BSA medium enhances the production of VEGF 
secreted by hUCMSCs. The peak secretion level was 
found to occur on day 3.
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