SYNERGISTIC ANTIBACTERIAL EFFECTS OF CEFOTAXIME CAPPED METAL DOPED ZINC OXIDE NANOSTRUCTURES
Main Article Content
Abstract
Objectives: The study describes the synthesis of ZnO nanostructures doped with metals including Ca, Mg, Mn, Ag and Cu using a co-precipitation method.
Methodology: The nanostructures were examined through Scanning Electron Microscopy (SEM) analysis and X-ray diffraction (XRD) assessment The antibacterial efficacy of these nanostructures was evaluated using a modified disk diffusion Kirby Bauer method.
Results: Nanostructures displayed effective antimicrobial activity against a variety of bacterial strains. The most effective nanostructures were found to be those made with Ca-Cefotaxime and Ag-Cefotaxime doped ZnO.
Conclusions: The study demonstrates that the combination of ZnO and Cefotaxime with different metal ions has an impact on the antibacterial activity against various bacterial strains. To the best of our knowledge, nanoparticles with cefotaxime have not been studied in the literature before. Further studies should investigate the mechanism of action.
Article Details
Work published in JPMI is licensed under a
Creative Commons Attribution-NonCommercial 2.0 Generic License.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
References
Laraib S, Shah A, Asim N, Amin F, Lutfullah G, Haider J. Synthesis, char¬acterization and antibacterial activ¬ity of simple ZnO and metal doped ZnO nanoparticles. Pak J Pharm Sci. 2021;34(5):1651-8.
Yim HJ, Kim TH, Suh SJ, Yim SY, Jung YK, Seo YS, et al. Response-Guided Therapy with Cefotaxime, Ceftriax¬one, or Ciprofloxacin for Spontaneous Bacterial Peritonitis: A Randomized Trial: A Validation Study of 2021 AAS¬LD Practice Guidance for SBP. The American Journal of Gastroenterology. 2023;118(4):654-63. DOI: 10.14309/ ajg.0000000000002126.
Padda IS, Nagalli S. Cefotaxime. In: StatPearls. StatPearls Publishing, Trea¬sure Island (FL); 2022.
Yim HJ, Kim TH, Suh SJ, Yim SY, Jung YK, Seo YS, et al. Ceftriaxone, or Cip¬rofloxacin for Spontaneous Bacterial Peritonitis: A Randomized Trial: A Val¬idation Study of 2021 AASLD Practice Guidance for SBP. Am J Gastroenterol. 2022;118(4):654-63. DOI: 10.14309/ ajg.0000000000002126.
Avadhanam M, Kulkarni AV. Convention¬al Antibiotics for Spontaneous Bacterial Peritonitis: Are They Still Effective? Am J Gastroenterol. 2023;118(4):613-4. DOI: 10.14309/ajg.0000000000002155.
Al Hagbani T, Rizvi SM, Hussain T, Mehmood K, Rafi Z, Moin A, et al. Cefotaxime mediated synthesis of gold nanoparticles: Characterization and antibacterial activity. Polymers. 2022;14(4):771. DOI: 10.3390/ polym14040771.
Alavi M, Hamblin MR, Martinez F, Ken¬nedy JF, Khan H. Synergistic combina¬tions of metal, metal oxide, or metalloid nanoparticles plus antibiotics against resistant and non-resistant bacteria. Micro Nano Bio Aspects. 2022;1(1):1-9. DOI: 10.22034/MNBA.2022.149374.
Cheng N, Wang B, Wu P, Lee X, Xing Y, Chen M, et al. Adsorption of emerging contaminants from water and wastewa¬ter by modified biochar: A review. Envi¬ronmental Pollution. 2021;273:116448. DOI: 10.1016/j.envpol.2021.116448.
Kafshgari LA, Ghorbani M, Azizi A. Synthesis and characterization of manganese ferrite nanostruc¬ture by co-precipitation, sol-gel, and hydrothermal methods. Part Sci Technol. 2018;7:904-10. DOI: 10.1080/02726351.2018.1461154.
Mayandi J, Madathil RK, Abinaya C, Bethke K, Venkatachalapathy V, Rade¬mann K, et al. Al-doped ZnO prepared by co-precipitation method and its ther¬moelectric characteristics. Mat Letters. 2021;288:129352. DOI: 10.1016/j. matlet.2021.129352.
Trukhachev V, Orobets V, Kastarnova E, Shakhova V. Clinical and therapeutic ef¬ficacy of biodegradable nanostructures in experimental infections. IOP Conf Ser Earth Environ Sci. 2019;403(1); 012107. DOI: 10.1088/1755- 1315/403/1/012107.
Qiao Y, Xu Y, Liu X, Zheng Y, Li B, Han Y, et al. Microwave assisted antibac¬terial action of Garcinia nanoparticles on Gram-negative bacteria. Nat Com¬mun. 2022.13(1):2461. DOI: 10.1038/ s41467-022-30125-w.
Malakootian M, Yaseri M, Faraji M. Removal of antibiotics from aqueous solutions by nanoparticles: a system¬atic review and meta-analysis. Environ Sci Pollut Res. 2019;26:8444-58. DOI: 10.1007/s11356-019-04227-w
Vilela D, Stanton MM, Parmar J, Sán¬chez S. Microbots decorated with silver nanoparticles kill bacteria in aqueous media. ACS Appl Mater Interfaces. 2017;9(27):22093-100.
Karlowsky JA, Lob SH, DeRyke CA, Siddiqui F, Young K, Motyl MR, et al. Prevalence of ESBL non-CRE Esche¬richia coli and Klebsiella pneumoniae among clinical isolates collected by the SMART global surveillance programme from 2015 to 2019. Int J Antimicrob Agents. 2022;59(3):106535. DOI: https://doi.org/10.1016/j.ijantimi¬cag.2022.106535.
Dhanalakshmi A, Natarajan B, Ramadas V, Palanimurugan A, Thanikaikarasan S. Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles. Pramana. 2016;87:1-9.
Ahamed AJ, Kumar PV, Karthikeyan M. Synthesis, structural and antibac¬terial properties of Mg Doped ZnO Nanoparticles. J Environ Nanotech¬nol. 2016;5(2):11-6. DOI: 10.13074/ jent.2016.06.162189.
Hameed AS, Karthikeyan C, Sasikumar S, Kumar VS, Kumaresan S, Ravi G. Im¬pact of alkaline metal ions Mg 2+, Ca 2+, Sr 2+ and Ba 2+ on the structural, optical, thermal and antibacterial prop¬erties of ZnO nanoparticles prepared by the co-precipitation method. J Mater Chem B. 2013;1(43):5950-62.
Singhal S, Kaur J, Namgyal T, Sharma R. Cu-doped ZnO nanoparticles: synthesis, structural and electrical properties. Phys B Condens Matter. 2012 ;407(8):1223- 6. DOI: 10.1016/j.physb.2012.01.103
Prescott WV, Schwartz AI. Nanorods, nanotubes and nanomaterials research progress; Nova Publishers: 2008.
Shojaei AF, Tabatabaeian K, Zanjanchi MA, Moafi HF, Modirpanah N. Synthesis, characterization and study of catalytic activity of Silver doped ZnO nanocom¬posite as an efficient catalyst for selec¬tive oxidation of benzyl alcohol. J Chem Sci. 2015;127:481-91. DOI: 10.1007/ s12039-015-0795-0.
Noman MT, Amor N, Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit Rev Solid State Mater Sci. 2022;47(2):99-141. DOI: 10.1080/10408436.2021.1886041.
Manjunatha RL, Usharani KV, Naik D. Synthesis and characterization of ZnO nanoparticles: A review. Man¬junatha RL, Usharani KV, Naik D. Synthesis and characterization of ZnO nanoparticles: A review. J pharmacogn phytochem. 2019;8(3):1095-101.
Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activ¬ity of metal oxide nanoparticles against Gram-positive and Gram-negative bac¬teria: a comparative study. Int J Nano-medicine 2012:6003-9. DOI: 10.2147/ IJN.S35347.
Shah A, Lutfullah G, Ahmad K, Khalil AT, Maaza M. Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem Lett Rev. 2018;11(3):318-33. DOI: 10.1080/17518253.2018.1502365
Abo-Shama UH, El-Gendy H, Mousa WS, Hamouda RA, Yousuf WE, Hetta HF, et al. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect Drug Resist. 2020:351-62. DOI: 10.2147/IDR.S234425.
Anwar MA, Aqib AI, Ashfaq K, Deeba F, Khan MK, Khan SR, et al. Antimicrobial resistance modulation of MDR E. coli by antibiotic coated ZnO nanoparticles. Mi¬crob Pathog. 2020;148:104450. DOI: 10.1016/j.micpath.2020.104450
Ramesh T, Thangaraj M, Kumaran R, Annadurai D, Subramanian J, Puru¬shothaman S, et al. Synthesis, char¬acterization and efficacy of antibi¬otic coated chitosan nanoparticles on human pathogens. Res J Pharm Technol. 2020;13(8):3903-8. DOI: 10.5958/0974-260X.2020.00691.5.
Sirelkhatim A, Mahmud S, Seeni A, Kaus NH, Ann LC, Bakhori SK, et al. Review on zinc oxide nanoparticles: antibac¬terial activity and toxicity mechanism. Nanomicro Lett. 2015;7:219-42. DOI: 10.1007/s40820-015-0040-x.
Guan G, Zhang L, Zhu J, Wu H, Li W, Sun Q. Antibacterial properties and mechanism of biopolymer-based films functionalized by CuO/ZnO nanopar¬ticles against Escherichia coli and Staphylococcus aureus. J Hazard Ma¬ter. 2021;402:123542. DOI: 10.1016/j. jhazmat.2020.123542.
Ibrahem EJ, Yasin YS, Jasim OK. Anti¬bacterial activity of zinc oxide nanopar¬ticles against Staphylococcus aureus and Pseudomonas aeruginosa isolated from burn wound infections. Cihan Univ Sci J. 2017;10:24086.
Abdo AM, Fouda A, Eid AM, Fahmy NM,Elsayed AM, Khalil AM, et al. Green synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aerugi¬nosa and their activity against patho¬genic microbes and common house mosquito, Culex pipiens. Materials. 2021;14(22):6983. DOI: 10.3390/ ma14226983.